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This study  puts  forward  a variable  clique  overlap  model  for identifying  information  communities,  or
potentially  overlapping  subgroups  of  network  actors  among  whom  reinforced  independent  links  ensure
efficient  communication.  We  posit  that the  average  intensity  of communication  between  related  individ-
uals in  information  communities  is greater  than  in  other  areas  of  the  network.  Empirical  tests  show  that
the  variable  clique  overlap  model  is  indeed  more  effective  in  identifying  groups  of individuals  that  have
strong  internal  relationships  in communication  networks  relative  to  prior  cohesive  subgroup  models;  the
pathways  generated  by  such  an arrangement  of  connections  are  particularly  robust  against  disruptions
of  information  transmission.  Our  findings  extend  the  scope  of  network  closure  effects  proposed  by other
researchers  working  with  communication  networks  using  social  network  methods  and  approaches,  a tra-
dition which  emphasizes  ties  between  organizations,  groups,  individuals,  and  the  external  environment.
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1. Introduction

Recent research in organizational theory has attempted to
understand how individuals and groups are linked via the network
structure, and how this relates to important behavioral outcomes
such as collaboration and information transmission. Some scholars
have attempted to explore this structure more deeply, focusing on
the pattern of connections within and between groups in social
networks (Everett and Borgatti, 1998; Moody and White, 2003),
the nature of resources which inhere in these connections (Burt,
1992; Coleman, 1988), average path lengths between individuals
and their relationship to information transmission (Killworth and
Bernard, 1978), and by examining the high local clustering of indi-
viduals which seems to be a recurring characteristic of linked global
communities (Uzzi and Spiro, 2005; Watts and Strogatz, 1998).

Nevertheless, our understanding of networks of individuals
remains incomplete. Much remains unexplored in our struc-
tural understanding of social networks, and there is a paucity
of research on how clusters of individuals actually link to each
other and to the broader organizations and institutions within
which they are embedded to make information transmission
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happen. While we know a good deal about the role of interme-
diaries in spreading information between disjoint groups (Burt,
1992), we know much less about the mechanisms which under-
lie the broader structure of information transmission within
social networks (Stinchcombe, 1990). Accordingly, our paper
moves to explore these mechanisms further. We  do so by build-
ing on the extensive literature on the detection of cohesive
subsets in social networks, which uses formal mathematical meth-
ods to define structural concepts within social networks (Borgatti
et al., 1990; Forsyth and Katz, 1946; Moreno, 1934; Wasserman and
Faust, 1994).

Taking up this approach, we  first define a family of cohesive
subgroup models called information communities, which consist of
potentially overlapping subgroups of network actors among whom
reinforced independent links facilitate efficient communication
(defined, in general, as lossless information transmission). Subse-
quently, we demonstrate how information communities include
the models of Luce and Perry (1949) and Palla et al. (2005), and
introduce a new variable clique overlap model within this family of
cohesive subgroup models. This model is distinct from prior mod-
els in that it allows researchers to more loosely (that is, they exhibit
higher global connectivity) or tightly (they exhibit lower global
connectivity) define cohesive subgroups as required by the ques-
tion and the independent and dependent variables under study.

The form of organization we  study is one that utilizes multiple
independent paths throughout the network to mutually reinforce
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both the strength of relationships as well as the integrity of the
information traveling within a particular group. In this instance,
having reinforced independent communication paths for informa-
tion transmission takes on heightened importance. Imagine, for
instance, the remarkable resilience of the regime of Bashar al-Assad
in Syria. As of this writing, Assad and most of his government have
survived an uprising that began peacefully in March 2011 and, fol-
lowing a harsh and repressive response by Assad’s forces, quickly
transformed itself into an armed uprising supported financially and
militarily by numerous international opponents. While the support
of important allies, such as the Russian and Iranian governments
and the Lebanese political party Hezbollah, has been important in
keeping Assad’s regime intact, more important may  be the fact that
the regime’s core actors have tightly coalesced as an array of domes-
tic and international forces has aligned against it (Bellin, 2004;
Robinson, 2012). This core group, which is generally thought to
include Assad, family members such as Assad’s brother Maher, key
senior military officials, and senior business and government exe-
cutives (many of whom are drawn from Assad’s Allawite religious
community and Christian and Sunni elites aligned with the regime),
has seen relatively few defections since the start of the conflict.
Working in close coordination, this group serves as the regime’s
“brain,” driving its survival, in particular in Syria’s major urban
centers, and gains against rebel forces. A similar phenomenon has
been noted by observers of the North Korean regime, where infor-
mation access is tightly controlled and key decision-makers cluster
around the supreme leader (since late 2011 Kim Jong-un and before
him his father and grandfather, respectively, Kim Jong-il and Kim
Il-sung) within important elite institutions such as the National
Defense Commission, the Cabinet and the Korean Workers’ Party
(Bermudez, 2004).

While a number of communications configurations might be
possible for a top leadership group, in the instances noted above
a tightly-linked group with little scope for brokerage and multiple
reinforced paths for information transmission ensures that outside
information and influence impacts the whole group, which in this
manner remains secure against attempts to dislodge it. In addition,
due to its cohesive nature, the group itself can broker between the
various important constituencies in the country, including the mil-
itary, business interests and the civil service. Importantly, however,
it is the group which serves a brokering function across the whole
network, not individual actors within the group.

Tightly-controlled authoritarian governments are one area
where the network structure we describe is particularly evident,
but these structures can be identified in any settings where cohe-
sive groups play a role in regulating information flow (e.g., certain
departments of corporations, government security agencies, reli-
gious orders such as the Catholic Church). Indeed, while in recent
years the rise and increasing complexity of information com-
munication technologies has seemingly complicated information
exchange in fundamental ways and thereby increased the like-
lihood of strategic information manipulation by organizational
actors (Burt, 1992; Daft and Weick, 1984; Yates, 1993; Zmud, 1990),
these technologies have also concomitantly strengthened the abil-
ity of organizations to build in fault tolerance mechanisms that
greatly increase both the efficiency of information transmission
and the likelihood that individual-level brokering behaviors will
be detected and sanctioned. Thus, notwithstanding the diversity of
relationships present in contemporary organizational settings, by
focusing on one key characteristic of social networks, information
conductivity, we may  be able to increase our understanding of how
the structure of connections within a particular social network is
related to the survival of the organization or group within which
this network is constituted.

In the next section, we briefly describe prior work in the
organization studies literature which looks at communication, in

particular work which examines the structure of cohesive sub-
groups within social networks. Section 3 introduces the generic
concept of information communities and provides the mathe-
matical details of a variable clique overlap model for identifying
communities building on the research described in Section 2. In
Section 4, we  test the efficacy of the variable clique overlap model
against earlier cohesive subgroup models on two  sets of commu-
nication data – a telephone network and an organizational email
network – and present our empirical methods and results. We
conclude with a summary of our findings, suggestions for future
research, and potential applications in Section 5.

2. Theoretical background

Starting at least as far back as Forsyth and Katz (1946), who
developed the concept of a “sociomatrix,” organizational scholars
have noted the impact of subsets of the network which are charac-
terized by greater cohesiveness relative to the rest of the network.
Cohesive subgroups provide a crucial link between individuals and
organizations – between the micro and macro levels of analysis
– and are characterized by a high number of ties between individ-
uals within the group. They are also relatively closed to outsiders, as
most of the interactions of the subgroup as a whole happen between
members (Borgatti et al., 1990; Freeman, 1992; Moody and White,
2003).

Early research on cohesive subgroups attempted to elucidate
the mechanisms by which group behavior within social networks
affected different outcomes. Subsequent research in this area
has explored network structure using graph-theoretic criteria to
examine group behavior (Alba, 1973; Luce, 1950; Mokken, 1979;
Seidman and Foster, 1978). A working assumption of this school
of thought is that an optimally cohesive subgroup is a clique, in
which all subgroup members interact with one another. Cliques
are important to understanding the concept of network closure. As
noted by Burt (2005), networks in which people are very highly con-
nected to each other, that is, where two  actors are both connected to
the same third-parties, are better at transmitting information. As
the strength of third-party ties connecting two  people increases,
the network around them becomes more closed (Burt, 2005). Thus,
closure in an organizational setting is measured by the strength
of the indirect connections between individuals with colleagues
acting as third parties. In this schema, some individuals are more
strongly connected through third parties than others in the study
population. The relationships of such individuals are said to be
strongly embedded in the closed network. One of the important
outcomes of strongly embedded close relationships is an increase in
trust between individuals, which can lead to increased information
transfer as well (Coleman, 1990).

While structural definitions of groups based on cliques have
proven fairly effective at identifying various organizational vari-
ables such as relationship intensity, group centrality, and even
performance (Balkundi and Harrison, 2006; Borgatti et al., 2009;
Evans, 2010), further refinements are necessary to link these set
definitions with particular behavioral outcomes such as interper-
sonal communication. A first step towards accomplishing this was
introduced by Borgatti et al. (1990), who  proposed using inde-
pendent paths as a way to identify cohesive subsets. Specifically,
they defined subgroups based on high connectivity between any
pair of within-group actors. While this method results in groups –
termed “Lambda sets” – that are likely to persist despite the loss of a
few relationships within them, it produces non-overlapping groups
which remain relatively independent from the rest of the network.
One recent approach, put forward by Moody and White (2003),
addresses this issue by proxying vertex connectivity (the minimum
number of actors that one has to remove from a group to disconnect
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it) for the structural cohesion of groups. This method of analyzing
vertex-independent paths between actors (no two of which can be
simultaneously disconnected by the removal of one intermediary)
is closely related to the variable clique overlap method for locat-
ing information communities detailed in the next section. However,
the method we outline is less dependent on intermediaries in infor-
mation transmission. It instead relies on the interactions of cliques
themselves to predict communication intensity.

Focusing on independent communication pathways is impor-
tant for several reasons. Because these pathways go through
different organizational actors, removing one or perhaps even a
few actors will not result in the breakdown of the pathway. Rather,
the presence of alternate communication routes ensures that group
cohesion is maintained. Also, because communications can flow
through multiple paths, it is difficult for any one or a few actors
to limit information sharing in any substantial way (Moody and
White, 2003). At a structural level, this information acquisition
phenomenon is also related to the idea of the clique. Individuals’
informal social relations tie them into relatively cohesive sub-
groupings, which possess their own norms and values, and which
may  run counter to the formal social structure of the organization
(or other social grouping) within which they are found. Cliques
are often among the most important sources of a person’s iden-
tity and sense of belonging and have the potential to strengthen
relations between individuals (Scott, 2006). The presence of a third
(or fourth, or fifth, etc.) party can curb disagreement and provide a
basis for reaching consensus as a means for maintaining harmony
within the group (Krackhardt, 1999).

In the next section, we describe prior models of cohesive groups
and develop a variable clique overlap model for communication
contexts. Before, doing this, however, we offer the following caveat:
looking specifically at the context of communication networks, it
is important to bear in mind that connection structure provides
only a tiny fraction of the important information contained in social
interactions between network actors. The nature of information
exchanged is also very important, and relationships are affected
by the kinds of information transmitted between two  actors (e.g.,
whether this information is positive or negative). Thus, similar
structural patterns may  perhaps lead to different organizational
outcomes if the content of the relationship is taken into account.
Keeping in mind these considerations regarding the content of ties
between individuals and groups, we nevertheless proceed in sub-
sequent sections of this paper with a relatively structural analysis.
While we do not discount the importance of the nature and con-
tent of the ties connecting actors in a given social network, the
limitations of our data preclude such an analysis at present.

3. Model

In this section we review the relationship between informa-
tion flow and the network structure as discussed by network
researchers. We  then introduce the concept of information commu-
nities and provide a variable clique overlap model for identifying
communities building on prior research. Table 1 offers a summary
of the cohesive group models (defined over unweighted networks)
discussed in this section, including our own variable clique overlap
model.

3.1. Communication and the conductivity of relationships

Our view of personal influence focuses on the information trans-
mitting ability (conductivity) of relationships. We  assume that if
from two actors, v1 and v2, v1 possesses some information, then for
some 0 ≤ ıv1v2 < 1, v2 obtains the same information with probabil-
ity ıv1v2 . We do not focus on the dynamics of the flow of information,

and we  assume that all communication happens within a single
examined period of time.

Under this probabilistic view and with these assumptions,
higher conductivity can be understood as increased fault tolerance
to errors in information transfer. Furthermore, since we do not gen-
erally possess information revealing the nature of ties (in terms
of our model, we do not know the magnitude of particular ı-s),
fault tolerance can only be associated with redundancy. Therefore,
we require information communities to be structures with several
independent paths between any pair of associated actors. Thus, our
probabilistic assumptions relate very closely to the fundamentals
of brokerage and closure: when efficient communication is a key
measure of success in the organization, the most stable cohesive
groups are those with high connectivity. Conversely, our model
does not allow actors to be in a brokering position within infor-
mation communities. Along these lines, to completely exclude the
possibility of brokerage, we only consider mutual relationships to
be in communities.

Network closure effects peak in the Luce and Perry cliques
(1949) – maximal subgroups of actors in which all individuals know
each other and among whom all choices are mutual (Wasserman
and Faust, 1994). In the sociology literature, the term clique refers
to maximal structures – in mathematical terms, maximal cliques.
It is thus natural to treat the structure of cliques in a network as
a community structure (see Rowley et al., 2004 for an empirical
study). The main limitation of this approach, however, is that forc-
ing so much within-group homogeneity results in very small groups
of actors. For instance, whereas there are social networks with
large cliques, the maximum clique size in typical communication
networks does not exceed 15–30 actors.

3.1.1. Cohesive groups based on group diameter
The vast literature on cohesive subgroups offers various meth-

ods to address this problem. Herein we  restrict our attention
to those approaches that are applicable in a setting where the
researcher only observes the structure but not the intensity of
communication relationships and has to conclude the structure of
cohesive groups based only on the unweighted network. The ear-
liest such approaches focused on groups with large within-group
actor similarity. Building on the notion of groups defined by Alba
(1973), Mokken (1979) introduced a family of structures deter-
mined by minimum within-group distance, defining an n-clique
of a network as a maximal subset of actors such that no two  actors
within the group are further than n steps away from each other
in the network. In this schema, an n-clan is an n-clique with the
restriction that any two  actors sharing group membership can be
connected via a path of length up to n that is contained entirely
within the group. Finally, an n-club is simply a maximal subnet-
work with diameter at most n. As in social networks, attributes of
related actors tend to be positively correlated, restricting within-
group actor distance results in homogeneous groups.

3.1.2. Cohesive groups based on within-group degree
Seidman and Foster (1978) and Seidman (1983) took a different

approach. They defined groups based on minimum within-group
degree. In a k-plex, the minimum within-group degree is the size
of the group minus k. In a k-core, the minimum within-group degree
is k. Both of these methods detect groups of high connectivity and
within-group similarity. However, it is interesting to note that,
unlike cliques and the other groups we discuss above, the k-cores
cannot partially overlap. Instead, they form a hierarchical clustering
of the actors into similarity groups.

3.1.3. Minimum across-group communication
The methods referred to thus far tend to produce structures

that exhibit high within-group and low across-group connectivity.
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Table  1
Overview of cohesive group models defined over unweighted networks.

Community model Organizing principle Overlap References

Cliques Baseline model Yes Luce and Perry (1949)
N-cliques Maximum within-group Yes Mokken (1979)
N-clans distance Yes Alba (1973), Mokken (1979)
N-clubs Yes Mokken (1979)
K-plexes Minimum within-group Yes Seidman and Foster (1978)
K-cores degree No Seidman (1983)
Girvan–Newman partitions Minimum across-group No Girvan and Newman (2002)
Modularity-based communities communication No Newman (2006)
Lambda Sets Independent paths No Borgatti et al. (1990)
K-components within groups Yes Moody and White (2003)
“UCINET” clique clustering Reinforced No Everett and Borgatti (1998)
Uniform communities independent paths Yes Palla et al. (2005)
Variable overlap communities Yes This study

Girvan and Newman (2002) propose that these properties should
serve as a primary means of classifying actors in a network. They
provide a hierarchical clustering of actors by starting from the full
network and removing edges in reverse order according to their
betweenness, recomputing the betweenness values after every
step. However, their model has high computational requirements
and is therefore impractical for analyzing large networks. Newman
(2006) presents a related but faster approach: his “method of opti-
mal  modularity” also starts from the full network, but in every step
it splits the network into two groups that maximize “the number
of edges falling within groups minus the expected number in an
equivalent network with edges placed at random”. An interesting
property of this algorithm is that for every network, it generates
a unique distribution of non-overlapping groups; however, as a
result, smaller communities are not always identified (Fortunato
and Barthélemy, 2007).

3.1.4. Independent paths within groups
In an influential paper building on prior work from the engi-

neering discipline, Borgatti et al. (1990) introduced the idea of
defining subgroups based on high connectivity between any pair
of within-group actors. For their Lambda sets, any two actors in the
same group are connected by a higher number of edge-independent
paths than there are edge independent paths between any member
of the group and any non-member. The so-arising groups tend not
only to have both small diameter and high connectivity, but much
more importantly, they are difficult to disconnect by removing
only a few relationships. Thus, Lambda sets have high fault tol-
erance against the breaking down of a few relationships within the
group. This is a very similar property to what we  require for infor-
mation communities. However, the method of Borgatti et al. also
produces a hierarchical clustering of nodes in the network, result-
ing in non-overlapping groups. Further, as Moody and White (2003)
point out, around actors with high brokering power, high edge
connectivity still may  be accompanied by low vertex connectivity.
To address this issue, Moody and White define structural cohe-
sion in networks by vertex connectivity: the (overlapping) cohesive
groups are the k-components of the network. A k-component in a
network is an induced subnetwork that remains connected even
after removing k − 1 actors from the group. This definition pro-
vides stronger redundancy within groups, which makes Moody
and White’s (2003) model particularly relevant for application in
communication networks.

3.1.5. Reinforced independent communication channels
Whereas vertex connectivity ensures that information has mul-

tiple redundant ways to travel between actors in a group, these
paths may  be arbitrarily long. When the relationships in the net-
work are imperfect at transmitting information, such long paths
may  cause the breakdown of the system even without the removal

of actors from the group due to the degradation of information
integrity in the message. To address this issue, Everett and Borgatti
(1998) proposed a method of grouping actors by first identifying
the Luce and Perry cliques in the network and then clustering these
cliques based on the size of their overlap (number of actors shared
in common). From the perspective of information transmission,
these structures not only have the high vertex connectivity desired,
but as the independent paths connecting within-group actors run
through overlapping cliques, the information may be reinforced
at every step. A specific algorithm of this kind, generating non-
overlapping groups of actors, is implemented in a follow-up work
by Borgatti et al. (2002). Similarly, Palla et al. (2005), drawing from
work in the physical sciences, also define communities as con-
nected collections of cliques. Their novel idea is to apply strictly
local conditions – specifically, one on the size of the overlap – to
decide whether two cliques belong to the same subgroup (com-
munity) or not. As a result, any two cliques sharing the required
overlap are grouped together even in the case when they are
linked more strongly to two, otherwise disconnected groups. This
approach produces overlapping subgroups of actors. However, it
does not explicitly look at (the intensity of) interactions between
actors within the network, and as a result, the analysis is still highly
structural and static.

3.2. From cliques to communities

While all models of cohesive groups described offer researchers
an opportunity to examine communication within social networks,
not all of them are optimal for detecting the most important com-
munication channels within these networks. For instance, some
of these approaches enforce too much within-group homogene-
ity (e.g., k-cores), while others allow individuals to be in brokering
positions within the derived structures (e.g., modularity-based
communities). Models such as the k-components and others within
the family of those utilizing reinforced independent communi-
cation channels (described in Section 3.1.5) are the exception in
this regard, but, as pointed out in the foregoing discussion, the k-
components’ reliance on long information–transmission paths may
severely degrade the integrity of transmitted information, thereby
decreasing the ability of the group as a whole to broker across the
entire network. At the same time, structures built from cliques
allow actors within these cliques (including those at the center
and the periphery of a particular grouping) to access information
available to the rest of the network without resorting to brokers
and without their being excluded from the information flow. In
this sense, such structures democratize information sharing within
their particular sub-groupings.

This is an important consideration in settings, such as the
examples of the Syrian and North Korean regimes mentioned ear-
lier, where the (regulated) flow of information within a tightly
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connected grouping of individuals helps to ensure its survival
and potentially protects it from internal and external threats by
allowing rapid identification and sanctioning of behavior which
violates group norms. A recent example will help illustrate this
point. In December 2013, the regime of Kim Jong-un in North Korea
dismissed Jang Song-thaek, Kim’s uncle and the unofficial second-
in-command for the country. Jang was subsequently executed,
along with several of his followers in the power structure, and his
other supporters in the regime are in the process of being identi-
fied and removed. In an unusual move, the Kim regime announced
two detailed press releases within the period of a week outlin-
ing the reasons for Jang’s removal.1 The primary motivation for
Jang’s removal from power and execution seems to have been his
attempts to develop his own, independent power base by going
outside of the official, hierarchical organizational structures and
communication channels established by Kim.

To reflect the above argument, we extend our probabilistic
model of communication presented in Section 3.1 by assuming that
information travels over sequences of cliques between its source
and its destination. This simplification is natural since in many
cases when the source of information is a single actor, the most
closely related actors immediately obtain the same information.
Thus, we assume that at the beginning of the examined time period,
all members of some clique have some common information, to be
spread in the form of messages. Under this assumption, identifying
structures that are capable of efficiently transmitting this message
reduces to the task of identifying those cliques (if any) which are
likely to obtain the same message.

3.3. Information communities – a general model

Based on the ideas of Everett and Borgatti (1998), Palla et al.
(2005) proposed that communities be understood primarily as
collections of cliques as opposed to being collections of actors
(whereas the mapping from cliques to actors is trivial). They defined
two cliques to be adjacent when they share at least c nodes, c being
a parameter that they empirically calibrated. Finally, they took the
connected components of the so-built clique-network to form their
communities. Below we generalize their model. We  use a similar
method to identify information communities but we determine the
adjacency of two cliques by comparing the output of a more general
clique overlap function against an adjacency threshold. The clique
overlap function in our model may  take into account not only the
size of the overlap but also the size of the two overlapping cliques,
thereby providing a more flexible necessary condition on clique
overlap. As a result, we arrive to a general model that, on the one
hand, incorporates the Luce and Perry cliques and the communities
of Palla et al. (2005), while on the other hand offers an opportunity
to better characterize situations where cohesive groups play a role
in regulating information flow.

As smaller structures (due to the smaller sample size) tend to
carry greater variance with respect to their properties of interest,2

we introduce two ways that allow researchers to further refine the
necessary conditions for a set of actors to be qualified as a cohesive
subgroup under our method. First, smaller cliques may  be excluded
from the clique-network. Second, we allow researchers to specify
the minimum number of actors required in a community. Thus, our
general model of information communities has four parameters:

1 “Report on Enlarged Meeting of Political Bureau of Central Committee of WPK”
(December 9, 2013); “Traitor Jang Song Thaek Executed” (December 13. 2013),
Korean Central News Agency (http://www.kcna.co.jp/index-e.htm).

2 In the empirical section, we focus on communication frequency as the depend-
ent measure.

Fig. 1. Illustrating clique overlap for k = 7, l = 6, m = 4: the central 4 nodes are shared
by  the k- and l-cliques.

the clique overlap function, the adjacency threshold, the minimum
clique size and the minimum community size.

Definition. Let p, q ∈ N  be the parameters for minimum commu-
nity size and minimum clique size, respectively. Let r ∈ R  be the
adjacency threshold and f (k, l, m) : N  × N  × N  → R  the clique over-
lap function. Let further S denote a subset of the nodes in a network.
We  say that S is an information community if it is a maximal structure
for which

• |S| ≥ p,
• every node in S is contained in a clique of size of at least q,
• for every pair of cliques in S, there is a series of cliques connecting

them so that for consecutive cliques of size k and l having an
overlap of size m,  we  have f(k, l, m)  > r.

Note that by setting f(k, l, m)  ≡ 0, p = q = 3 and r = 1, we obtain
a community structure which is equivalent to the set of Luce and
Perry cliques in the network. Naturally, more interesting structures
can also be generated by this model. The communities of Palla et al.
arise by taking f(k, l, m) ≡ m (and r = c − 2 to exclude cliques of size
less than c). As the minimum required overlap between two  cliques
does not depend on the size of the cliques, we  refer to this model
as that of “uniform” communities. This method is clearly able to
discover larger social groups. However, the enforced homogeneity
results in rigid structures. Below, we discuss how to better cap-
ture the underlying communication based solely on the structure
of communication relationships and derive another clique overlap
function f(k, l, m)  that, under our probabilistic model of communica-
tion, can identify communities of higher information conductivity.

3.4. A community model of variable clique overlap

In Section 3.2, we proposed that structures capable of efficient
information transmission are those that can successfully share
information between adjacent member cliques. To get a better
understanding of the role of the function f in this process, we now
analyze the role of clique overlap in the transmission of informa-
tion within a network. Imagine that two  cliques, K and L of sizes k
and l, respectively, have m common nodes (see Fig. 1). Assume that
the members of the k-clique know some information that they can
transmit to the members of the l-clique, with some small (average)
probability ı per link. For a node v ∈ L \ K , the probability of v
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receiving the message is3:

Pr[message reaches v] = 1 − Pr[message does not reach v]

≈ 1 − (1 − ı)m ≈ 1 − (1 − mı) = mı.

Thus, we may  conclude that f(k, l, m)  has to be linear in m.  How-
ever, whereas a small clique overlap can provide a strong medium
for information exchange between two small cliques, it may  be
insufficient between two large cliques. To account for this, we have
to normalize the value m. We  therefore transform our measure to
decrease in the sizes of the non-overlapping parts of the cliques,
which are k − m and l − m, respectively. The normalizing effect of
having more nodes standing out in one of the cliques should be
independent from the number of nodes standing out on the other
side. Therefore it is natural to take |(K⋃

L) \ (K
⋂

L)| = (k + l − 2m)
to be the normalizing factor. In this work, to achieve asymptotic
properties that are easier to interpret, we take a monotone trans-
formation of m/(k + l − 2m) that brings the above suggested measure
down to a fixed scale – we use m/(k + l).

For a further refinement, we may  observe that if k 	 l or l 	 k,
the transmission of the message is only efficient in one of the direc-
tions, whereas we want to identify structures of high information
conductivity independent from the location of the message source.
Thus, to penalize for asymmetry, we introduce the term 2kl/(k2 + l2)
which decreases in the absolute difference of k and l. Finally, for
convenience we normalize the measure to be in [0, 1) by doubling
the numerator.4

In sum, we set

f (k, l, m)  ≡ 4klm

(k + l) · (k2 + l2)
.

Thus, the size of required overlap between two  cliques to be
considered adjacent varies depending on the size of the two  cliques
in question. We  therefore refer to this model of communities as that
of “variable (clique) overlap”. In the next section, we  empirically
test the efficacy of this model by statistically comparing it to all
other models of cohesive groups discussed above.

4. Empirical studies

Can cohesive groups characterize information flows in commu-
nication networks? To answer this question, we constructed a test
to compare the model of variable clique overlap to other mod-
els of cohesive subgroups discussed in Section 3. We  did this by
exploring two communication networks: (1) a dataset of approx-
imately 70,000 subscribers of a fixed-line telephone provider in
Eastern Europe; and (2) a two-year collection of email data from
the now-defunct Enron Corporation of Houston, Texas, USA. The
first (telephone network) dataset provides a general communica-
tion context for exploring these phenomena; the second (email)
dataset provides a specifically organizational context which may
be more likely to display some of the patterns and characteristics
we describe for the informational communities family of cohesive
subgroup models and our variable clique overlap model within this
family.

Below we summarize the common methodological details.
Data-specific information and results are provided in the sections

3 The probability that the message spreads to some members of the target clique
indirectly through interconnecting actors does not change this analysis significantly
for the values of ı that we consider, and therefore we  omit the corresponding terms.

4 We have 0 ≤ m/(k + l) < 1/2 by the fact that neither clique is contained in the
other and 0 < 2kl/(k2 + l2) ≤ 1 by the inequality between the geometric and arithmetic
means.

corresponding to the particular studies. We  conclude by discussing
the potential interpretations of our findings.

4.1. Methods and variables

In Section 3.2 we  described the general framework of infor-
mation communities and detailed three specific subgroup models
within the so-defined family of models. These are the set of all
Luce and Perry cliques, the uniform community model of Palla et al.
(2005), and our approach, which defines communities by variable
clique overlap. Including the further methods detailed in Section 3,
Table 1 summarizes the cohesive group models that we tested in
our empirical studies.

In the analysis that follows, we took the approach of Burt (2005)
and used the structure of relationships in the network to predict
the strength of the same relationships, proxied by the intensity of
communication between related actors. The idea behind taking this
route is that if it is indeed not individual actors within the group
but the group itself which serves a brokering function across the
whole network, then one should observe heightened communica-
tion intensity between related actors within the groups defined
by the subgroup model in question. Therefore, we  compared our
model of variable clique overlap with prior methods of subgroup
analysis in two ways. First, we  took the ratio of the correspond-
ing relationship intensities of within-structure edges and all other
links, and compared these ratios across community models. Second,
for every relationship in the network, we  took centrality measures
of the related actors plus variables describing the extent to which
the two actors share membership in cohesive groups defined by
the model under study. Using these measures as independent vari-
ables, we  then employed a regression model to predict the intensity
of the given relationship as described in Section 4.1.2.

For any model we considered, we  let the term community distri-
bution correspond to the set of communities identified by a certain
parameterization of the model. For every such community distri-
bution, we defined intra-edges as relationships in the network that
are between actors who share at least one community membership.
Finally, we  considered every relationship that is not an intra-edge to
be an inter-edge.  In other words, two  related actors who  do not share
any community membership are related through an inter-edge.

In both studies, we  started from datasets containing commu-
nication records. Using these data, we built our communication
network, defining the set of actors and the structure of relation-
ships as detailed in the corresponding subsections below. We
then computed the set of communities corresponding to various
parameterizations of the general models detailed in Section 3. Sub-
sequently, we  computed the average intra-edge intensity to the
average inter-edge Intensity Ratio for all of the community distribu-
tions to report the range of these values. Finally, we  constructed two
group membership variables and, controlling for common meas-
ures of network centrality, we  statistically gauged the relationship
between group membership and communication intensity.

4.1.1. Intensity Ratio
Our first method simply assigns a positive number to any com-

munity distribution the following way: Intensity Ratio is the ratio
of the average relationship intensity of intra-edges to the aver-
age relationship intensity of inter-edges. That is, if A is the set of
actors and X ⊂ A × A the relationships in the network, and i(xa1a2 ) is
the intensity of the relationship between the actors a1, a2 ∈ A, our
measure Intensity Ratio becomes

Intensity Ratio =
∑

x∈W i(x)/|W |∑
x∈Bi(x)/|B| ,



Author's personal copy

56 P.P. Zubcsek et al. / Social Networks 38 (2014) 50–62

where W denotes the set of intra-edges and B = X \ W that of the
inter-edges.5

The quantity Intensity Ratio measures the extent to which the
community distribution identifies the key communication links in
the network. In short, the greater number of relationships charac-
terized by intense communication within groups, the higher the
value of Intensity Ratio. However, as the measure is not adjusted
for the number of nodes in groups, it is often biased towards very
small communities that capture only the most central region of
the network. This problem is nevertheless remedied in our second
method of analysis.

4.1.2. Relationship-level predictions
For a more comprehensive analysis, we employed regression

models to characterize the association between membership in
cohesive groups and the intensity of particular relationships. For
every relationship in the network, we computed variables that
reflect joint membership of the two related actors in one or more
cohesive subgroups defined by the method of subgroup analysis
in question. Further, we computed some standard network cen-
trality measures that are related to the level of network closure
(clustering) and the possibility for individual brokerage (degree,
betweenness and reach centralities). Controlling for these meas-
ures of network centrality, we subsequently estimated the intensity
of every relationship in the network within a statistical model.
Comparing the coefficients and the overall regression fit allowed
us to rank the studied models of subgroup analysis. Below we
first briefly describe our independent variables, then discuss issues
related to model selection.

4.1.2.1. Group membership. For any community distribution with
W being the set of intra-edges, for any relationship e(v1, v2), we let

Group membership =
{

1 if e ∈ W,  and

0 otherwise.

4.1.2.2. Group overlap. Everett and Borgatti (1998) proposed
‘clique overlap centrality’ to describe the prominence of actors
embedded in social networks. We  took this idea to the level of rela-
tionships. Keeping the notation from above, for a given community
distribution, z denoting the number of subgroups shared by the
related actors v1 and v2, we let

Group overlap =
{

z − 1 if e ∈ W,  and

0 otherwise.

For models producing disjoint cohesive subgroups, Group over-
lap ≡ 0 and therefore did not enter the regressions.

4.1.2.3. Degree centrality. For the regression analysis predicting
relationship intensity, it is most natural to control for the degrees of
actors (Freeman, 1979). As implemented in UCINET, we  take both
in- and out-degrees of both the source and target actors in every
directed relationship. For our undirected communication network,
we only used one degree variable per actor.

4.1.2.4. Clustering. The clustering coefficient measures the density
of connections in the network induced by the neighbors of the focal
actor (Watts and Strogatz, 1998). For directed networks, our clus-
tering measure was the density of the directed network induced by

5 If none or all of the edges are within communities, this measure is not
defined. However, distinguishing between the discussed community models on such
networks lies beyond our interest.

the out-neighbors of the focal actor (the measure is 1 if and only if
all connections are present in both directions).

4.1.2.5. Betweenness centrality. Freeman (1977, 1979) defined
betweenness centrality capturing the extent to which informa-
tion in the network flows through actors. Individuals with high
betweenness occupy critical positions that allows them to broker
information, potentially leading to higher status. We  used UCINET
to compute the betweenness values of the source and target actor
of every relationship.

4.1.2.6. Reach centrality. Out-reach centrality is a measure that
reflects how many actors in the network information coming from
the focal actor may  reach in a few steps (Borgatti, 2003). In-reach,
on the other hand, captures the extent to which the focal actor may
be reached by information originated elsewhere in the network.
We used UCINET to compute both reach centrality values for both
the source and the target of our communication links.

4.1.3. Model selection
Many of the models examined in this article map  multiple com-

munity distributions to one network, and often (except for the
deterministic method of Newman, 2006) even the first publica-
tions of subgroup models compared herein are silent on how the
researcher should best set the parameters of the given model.
To treat the nondeterminism in certain models from Table 1,
we considered multiple parameterizations where applicable and
computed our variables for each of the so-derived community
distributions. In a similar vein, instead of strictly defining the min-
imum number of actors required to be in a cohesive subgroup,
we allowed that parameter to vary as well. For Intensity Ratio, we
varied minimum cohesive subgroup size between 2 and 100, and
report the minimum and maximum Intensity Ratio taken at any of
the so-generated community distributions. Thus, this method char-
acterizes each model of cohesive subgroups by an interval. Whereas
we are primarily interested in the maximum of this interval (or
the best-case Intensity Ratio of each model), the lower end of the
interval may  carry important information on how each model may
perform under different parameterizations.

For the relationship-level regression models, we only manip-
ulated the structural parameters where applicable (but not
the minimum size of admitted cohesive subgroups). For the
k-components, k-cores, k-plexes and n-clans we varied the con-
nectivity/group diameter parameter between 2 and the maximum
for which the routine still completes (within 48 h on a standard PC
with 2.4 GHz processor frequency) and returns a non-empty com-
munity distribution. For the Lambda sets and the clique clustering
of Everett and Borgatti (1998), we simply took the output of UCINET
and tested for every distribution present in the output matrix. For
the information communities models (Luce and Perry, 1949; Palla
et al., 2005 and our variable clique overlap model) we varied q and
always set the parameter r so that cliques of size less than q could
not meet the overlap criterion. For the model of uniform commu-
nities, we achieved this by setting r = q − 2, while in our own model,
we set ((q − 1)/q) − 0.0001 ≤ r < (q − 1)/q.6 We  estimated the regres-
sion for all the so-generated models and report the regression with
the highest model fit according to McFadden’s pseudo-R2.

6 As the input of our computer algorithm, we could specify r up to four decimal
digits. Since any clique in the examined networks contains less than 100 actors, our
condition also implied (q − 2)/(q − 1) < (q − 1)/q − 0.0001 ≤ r.
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Table  2
Summary statistics for networks generated from the Call Traffic Dataset.

Full network Degree threshold

100 50 25

Actors 66,814 64,038 58,618 42,757
Relationships 906,752 498,482 295,485 93,546

Degreea 27.14 (64.20) 15.57 (13.00) 10.08 (6.86) 4.38 (2.67)
Clusteringa 0.085 (0.064) 0.056 (0.060) 0.050 (0.062) 0.041 (0.073)
Relationship intensitya,b 562.07 (2955.78) 689.30 (3472.36) 807.16 (3828.06) 960.29 (4261.01)

a Mean values reported, standard deviation given in brackets.
b Total call duration, in seconds.

4.2. Study 1 – Call Traffic Data of a telephone network

To define our first communications network, we  took call
records from a small Eastern European fixed-line telephone
provider. The dataset spans 3 months and contains individual call
records of about 70,000 customers (at the node level, however,
we do not possess information distinguishing private and business
subscribers). Each data record contains the identifier of the call-
ing and called parties, the duration of the phone call in seconds,
plus some marketing variables such as price and price discounts
for some calls. Since the latter information is not available for every
record, we do not use it in our analysis.

The communication network was constructed the following
way: telephone subscribers became actors and to each call we  gen-
erated a relationship between the calling and the called parties.
Importantly, to every call we can associate an information flow
both from the calling to the called party and vice versa. Therefore,
we undirected every relationship. To each pair of related actors we
then assigned the cumulated call duration (in seconds, during the
three months considered, in both directions) as the weight rep-
resenting the intensity of the relationship between them.7 Next,
we dropped the isolated actors corresponding to subscribers who
remained inactive during the period of analysis. This left 66,814
actors in the network, spanning 906,752 undirected relationships.
However, the degree distribution revealed that the lack of infor-
mation identifying business subscribers may  indeed be a problem:
there were several dozens of nodes with degrees over 1000. As such
high numbers of different partners contacted within three months
is unlikely for individual subscribers, we attempted to correct this
error by removing nodes with the highest degrees. As this approach
is clearly limited in its ability, we performed the cut for threshold
degrees 100, 50 and 25. Herein we report the results for the net-
work obtained by removing nodes of degree more than 50 but we
note that all our findings are essentially the same for both the other
two networks generated this way as well as for the full network of
66,814 actors.

Table 2 compares the full network to those achieved by remov-
ing the high-degree actors. After removing the actors with degree
more than 50, there were 58,618 actors and 295,485 undirected
relationships remaining in the dataset. The average relationship
intensity over these links (call duration, in seconds) was  807.16.8

4.2.1. Results
Due to specifics of the algorithmic implementation, in this

study, we restricted our focus to information communities.9 Table 3
reports the range of the Intensity Ratio measure for the three

7 We chose the additive relation between call durations and relationship intensity
to  keep our analysis as parsimonious as possible.

8 The total duration of the analyzed calls thus exceeded 7.56 years.
9 We implemented our algorithms representing the networks as bitvectors but

other algorithms store the networks via the full adjacency matrix. We stress here
that this is a technicality and not necessarily an indicator of superior performance.

Table 3
Intensity Ratios for various community models in the Call Traffic Dataset.

Model Cliques Uniform overlap Variable overlap

Intensity Ratio 2.39–3.03 2.06–3.03 2.24–3.03

models of information communities. The maximum clique size in
the network is 6, and for communities only composed of cliques of
size at least 5, the three models achieved a very similar performance
on this metric. For smaller clique sizes, the Luce and Perry cliques
obtained a higher Intensity Ratio, indicating that the tighter groups
better reflected the structure of the core communication links.

To understand how detecting cohesive groups may  help organi-
zational researchers in identifying the important communication
channels in the network, we also conducted a more robust follow-
up test. We  developed a statistical model that uses the group
membership variables defined in Section 4.1.2 to predict the com-
munication frequency for each relationship. For the maximum
validity of this test, we  controlled for the degree and the clustering
coefficient of the related actors. Due to the computational limi-
tations mentioned above, we omitted the betweenness and reach
centralities from this analysis.

Concerning the distribution of our dependent variable, exist-
ing theory does not provide us with strict guidance. Therefore,
we estimated the relationship between network variables and
cumulated call duration using multiple functional forms. Since the
no-relationships were observed in the relationship structure and
excluded from the regression, the distribution of our dependent
variable was positive and continuous. The log-normal distribution
is commonly used to model such distributions. Therefore, herein
we report the detailed results of a node-specific fixed-effects OLS
regression predicting the logarithm of cumulated call duration, for-
mulated as:

log Yij = �Xij + �i + εij,

where Xij includes a constant term, the group variables and the
average degree and clustering coefficients of the related actors (see
Section 4.1.2 for details). We  further assumed that εij ∼ N(0, �2) and
estimated both � and the node-specific fixed effects �i inside the
regression. Finally, we note that all of our findings reported below
are reproduced by other functional forms, for instance estimating
a Poisson regression to predict relationship intensity.

Table 4 shows the results of this analysis. All three models
achieved the maximum predictive power at minimum clique size
of 5; the results in the table concern these model instances. Not sur-
prisingly, the model achieving the highest fit was the clique model
of Luce and Perry (1949). Of the two other information community
models, our model of variable overlap outperformed the uniform
communities model in this test. However, the low model fit values
indicate that there is great individual heterogeneity that neither
models of cohesive groups, nor centrality measures were able to
account for. We  find it particularly interesting that in this con-
text our overlap measure had the highest predictive power for the
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Table 4
Study 1: predicting communication intensity in the Call Traffic Dataset. [Fixed-effects OLS regression. Standardized coefficients reported.]

Variable Cliques Uniform overlap Variable overlap Centrality only

Degree (average) −0.174*** (0.004) −0.134*** (0.004) −0.150*** (0.004) −0.011** (0.004)
Clustering (average) −0.025*** (0.004) 0.030*** (0.004) −0.001 (0.004) 0.233*** (0.004)
Group  membership 0.349*** (0.003) 0.392*** (0.003) 0.392*** (0.003)
Group  overlap 0.252*** (0.003) −0.005 (0.002) 0.136*** (0.002)
Constant 4.944*** (0.002) 4.944*** (0.002) 4.944*** (0.002) 4.944*** (0.002)

Observations 590970 590970 590970 590970
Individuals 58618 58618 58618 58618
�  (fraction of variance due to individual fixed effects) 0.2244 0.2220 0.2225 0.2156
Pseudo  R2 0.0629 0.0372 0.0474 0.0131

model of cliques. This indicates that in networks with large individ-
ual heterogeneity, high overlap centrality may  correspond to more
diverse social resources, leading to stronger relationships.

4.3. Study 2 – Enron Email Dataset

To define our second communications network, we  accessed
the publicly available Enron Email Dataset (Federal Energy Reg-
ulatory Commission [FERC], 2003). This database contains 200,869
records of emails and allows the generation of reports related to
specific data queries. Independent of email content, we  converted
the data into a directed graph. Actors in the database (as senders
or recipients of emails) were defined as nodes. Subsequently, for
every email an edge was generated from senders to all intended
recipients. In this context, emails sent to distribution lists were
bypassed. To every directed relationship we assigned the frequency
of communication along that link as a weight.

Since our measures are naturally defined on directed networks,
we kept the asymmetry of the communication relationships.

However, as in the directed case our communities are built from
maximal directed cliques,  only those actors who were both senders
and recipients of emails could be in communities. Therefore, only
nodes with the above property were extracted for analysis. Thus,
only nodes exhibiting this property were extracted for analysis. This
did not weaken our results since on the one hand, the communi-
cation via the affected links contained plenty of spam messages,
while on the other hand – possibly due to prior data cleansing
efforts of the FERC – the communication involving actors who were
only senders or only recipients of emails still remained at a much
lower average intensity than the average intensity in the remaining
network (reported below).

We converted strings of data into names of individuals, storing
trivial solutions in a relational database. Remaining strings were
matched to available information, and new nodes were created
when no match was possible. This method allowed us to identify
approximately 6000 individuals within the data set. Subsequently,
we matched the recipients of emails to those individuals in our
database, reducing the set of nodes to 3455 individuals. The num-
ber of induced directed relationships contained therein was found
to be 50,931, at an average intensity (frequency of communication
in the direction of the relationship) of 7.51. In accordance with the
objectives of our research, we did not perform dichotomizations of
the relationships. Thus, in our analyses, the minimum link intensity
was 1, while the maximum intensity was 676. Table 5 reports some
descriptive statistics of the so-generated network.

It is important to note that while there were a total of almost
3500 nodes in the final network we constructed, a number of key
organizational actors – including the one-time CFO Andrew Fas-
tow – were not part of this dataset. This is due to a number of
factors, including the fact that some senior executives bypassed
emails as a major method of communication, probably to avoid
leaving a written record of potentially-sensitive communications.
While certainly this is one limitation to the data, this sample does

Table 5
Descriptive statistics of the Enron Email network.

Mean St. dev.

Out-degree 110.67 (619.60)
In-degree 110.67 (279.60)
Clustering 0.19 (0.18)
Out-reach 1032.25 (165.58)
In-reach 1032.25 (142.86)
Betweenness 8765.46 (50768.00)
Relationship intensitya 7.51 (22.09)

a Number of emails.

include information for former Chairman and CEO Kenneth Lay,
an important organizational actor whose prominence in the net-
work, as calculated by standard centrality measures, was above the
median for the data set.

4.3.1. Results
The computation of the K-plexes and the communities based on

edge betweenness did not terminate within 48 hours of starting
the computation process. We therefore omitted these models from
the analysis. For the N-clans, the only computation that terminated
within 48 hours was that for N = 2.

Table 6 reports the Intensity Ratios for various community mod-
els. The results offer two  important things insights. First, we can
see that the only models that reached double-digit ratios are the
Lambda sets of Borgatti et al. (1990) and the clique clustering
method of Everett and Borgatti (1998) (the variable overlap model
we propose achieved the third highest values at this test). Second,
the community models defining structural cohesion in terms of
independent paths obtained higher Intensity Ratios than the rest
of the models tested.

To study how much help certain models offer at detecting the
most active communication links in the network, we again used a
statistical model to predict communication intensity: the number
of emails between the related actors in each relationship. To obtain
robust results, we controlled for the degree, the clustering coeffi-
cient, the betweenness and reach centralities of related actors. As

Table 6
Intensity Ratios for various community models in the Enron Email Dataset.

Model Cliques Uniform overlap Variable overlap

Intensity Ratio 1.97–4.43 1.90–4.64 1.94–6.29

Model UCINET clustering K-components K-cores

Intensity Ratio 1.74–23.92 1.83–3.69 1.35–3.69

Model Lambda sets Modularity groups N-clansa

Intensity Ratio 1.81–15.48 1.59–1.61 1.74–1.89

a Computationally feasible only for N = 2.
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our dependent measure is the count of emails within a given time
period, we modeled the data by estimating a Poisson regression.

We let Yij denote the number of emails in our sample sent by
actor i to actor j. Since we only included pairs of actors between
whom there was at least one email sent (when the communica-
tion relationships are observed, this information is given to the
organizational researcher), we used Yij − 1 as dependent variable
in the Poisson regression. (As (Yij − 1|Yij ≥ 0) has the exact same
distribution as Yij, the Poisson link function is still theoretically cor-
rect in this case.) In sum, we formulated the Poisson regression the
following way:

log(E(Yij − 1|Yij≥1, Xij)) = �Xij,

where Xij includes a constant term plus the network variables
enlisted in Section 4.1.2. We  estimated the model using the maxi-
mum  likelihood method.

Table 7 reports the results of this regression. In this study,
the network variables better explained communication patterns:
including only the network centrality measures achieved a pseudo
R2 almost 0.35. The models of cohesive groups discussed in this
paper improved the predictions further: the best-performing vari-
able overlap model achieved a pseudo R2-value above 0.41. It is
also clear that methods considering overlapping cliques can be
expected to perform better than those models that did not require
the presence of independent paths with frequent information rein-
forcement along them.

Estimating the Poisson regression for various parameterizations
of the models considered allows us to offer recommendations con-
cerning the optimal values of these parameters. For our variable
overlap model, the maximum fit was achieved at minimum clique
size of q = 5 (and r = 0.7999). Also, for any minimum clique size
below 7, our model performed better than all relaxations of the
Luce and Perry cliques considered herein. Thus, considering that
the variable overlap model also achieved the best fit for mini-
mum  clique size 5 over the Call Traffic Data, setting 3 ≤ q ≤ 6 and
0.6666 ≤ r ≤ 0.8333 seems to be a good starting point when apply-
ing our model over other communication networks. Concerning the
rest of the models of cohesive groups, we highlight several inter-
esting findings below. It is surprising that whereas the cliques also
have the strongest predictive power for minimum size of 5, the uni-
form communities predicted communication best at the minimum
clique size of 8. The k-cores performed best at k = 10, and the k-
components at k = 11. The latter fact is particularly interesting since
at such a high connectivity value, the communities detected by the
method of Moody and White (2003) did not overlap, whereas for
lower values of k the Overlap variable provided an extra predictor
in the statistical system we applied.

5. Discussion and conclusion

In this paper, we developed and tested a variable clique over-
lap model for identifying information communities, or potentially
overlapping subgroups of network actors among whom reinforced
independent paths facilitate efficient communication (lossless
information transmission). Empirical tests in two distinct contexts
– a telephone network and an organizational email network –
validated the model as a useful tool for studying information trans-
mission within communication networks and compared well with
earlier models examining the impact of group structure on orga-
nizational outcomes. In addition, we found that our model had
greater predictive power in the organizational email network than
in the more general telephone communication network. Our find-
ings suggest that new insights can be gained by grouping maximal
cliques of individuals within social networks based on the degree
to which they overlap; the pathways for information transmission

generated by such an arrangement of connections are particularly
robust against disruptions.

5.1. Contributions

This paper provides useful information for both organizational
scholars and practitioners. On the methodological side, our model
can be utilized by network researches as a means to identify
overlapping community structures in communication networks.
Breaking with the traditional clustering approach, the method
which we  detail focuses instead on the set of cohesive groups in a
social network and the interactions of those groups with each other.
This is achieved by capturing the flow of information in the network
at various levels – at nodes, at cliques, and at the level of com-
munities – and allows researchers to examine contexts where the
potential benefits of closure exceed those obtained from brokerage.

Our twofold contribution builds upon prior work on cohesive
subgroups to define the information community family of mod-
els which incorporate a clique-based conception of groups within
social networks (i.e., Luce and Perry cliques and the communi-
ties of Palla et al., 2005). In addition, we generalize these earlier
models by incorporating a more flexible variable clique overlap
function to provide the basis of clustering cliques in the network.
Since our model is particularly relevant for studying communica-
tion networks, we examined settings where network closure was
hypothesized to have an impact on information transmission. By
focusing directly on the structure of primary ties between individ-
uals, we tested the efficacy of our variable clique overlap model
in the context of communication networks. We  demonstrated that
this conception of information communities provides researchers
a powerful tool for identifying groups of individuals that have par-
ticularly strong internal relationships in closed social networks.

The test of the variable clique overlap model in communication
networks also confirmed earlier work which posits a link between
network closure and relationship intensity in social networks. By
extending this link to the communication network setting, how-
ever, we  demonstrated the extent to which different models of
cohesive subgroups are able to identify relationships which may
serve as important communication channels in an organizational
context.

We further demonstrated a novel way  to differentiate social
networks from non-social networks, and how the pure mathemat-
ical machinery of network analysis used in natural sciences such as
physics should be refined when analyzing social networks, in par-
ticular those found within organizations. We  did this by examining
contexts where cohesive groups may  play an active role in regulat-
ing the flow of information in the network. Indeed, our definition
of information communities is based on information transmission
between cliques in the network. The set of Luce and Perry cliques
and the uniform communities of Palla et al. (2005) are both special
cases of this general model.

When we  empirically compared the performance of our variable
clique overlap model against these two  existing models of informa-
tion communities, we found that the variable overlap model was
significantly better at identifying core links in the communication
network than Palla et al.’s (2005) uniform communities model. In
addition, it was  often better than the set of Luce and Perry cliques
in the network in this regard. Further, as the information commu-
nities identified by the variable overlap model can be of larger size
than the biggest clique in the network, we showed how to extend
the basic concepts of network closure to large-scale networks.

These insights can be related to a number of important
emergent organizational phenomena with related practical impli-
cations. Building on the mechanisms outlined with the example
of authoritarian political regimes presented earlier, we can, for
instance, envision overlapping networks of cliques as “centers of
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Table 7
Study 2: predicting communication intensity in the Enron Email Dataset. [Poisson regression. Standardized coefficients and robust standard errors (adjusted for correlation
at  each source node) reported.]

Variable Cliques Uniform overlap Variable overlap UCINET clustering Centrality only

Source out-degree 0.392*** (0.021) 0.390*** (0.019) 0.398*** (0.021) 0.382*** (0.020) 0.357*** (0.023)
Source in-degree −0.084* (0.033) −0.006 (0.036) −0.082* (0.035) 0.007 (0.035) 0.104* (0.043)
Target out-degree −0.002 (0.020) −0.000 (0.018) 0.012 (0.020) 0.007 (0.019) 0.015 (0.019)
Target in-degree 0.292*** (0.043) 0.330*** (0.041) 0.275*** (0.040) 0.321*** (0.037) 0.432*** (0.047)
Source clustering −0.170** (0.064) −0.181** (0.064) −0.168** (0.064) −0.160* (0.064) −0.088 (0.066)
Target clustering 0.065* (0.031) 0.005 (0.026) 0.032 (0.028) 0.055 (0.028) 0.113*** (0.032)
Source betweenness −0.051 (0.049) −0.061 (0.050) −0.054 (0.051) −0.062 (0.048) −0.134* (0.055)
Target betweenness −0.088** (0.030) −0.070* (0.028) −0.093** (0.029) −0.065* (0.027) −0.170*** (0.034)
Source out-reach 0.110 (0.084) 0.063 (0.085) 0.095 (0.083) 0.113 (0.092) 0.146 (0.088)
Source in-reach 0.066 (0.063) 0.102 (0.073) 0.049 (0.064) 0.103 (0.058) 0.163** (0.062)
Target out-reach −0.056 (0.041) −0.045 (0.042) −0.088* (0.041) 0.006 (0.043) 0.143** (0.044)
Target in-reach −0.004 (0.039) −0.060 (0.037) −0.017 (0.037) −0.026 (0.035) −0.102** (0.039)
Group membership 0.392*** (0.027) 0.361*** (0.037) 0.418*** (0.030) 0.344*** (0.023)
Group  overlap 0.074*** (0.011) 0.057*** (0.009) 0.094*** (0.010)
Constant 1.466*** (0.048) 1.474*** (0.048) 1.456*** (0.048) 1.474*** (0.047) 1.541*** (0.047)
Observations 50931 50931 50931 50931 50931
Pseudo R2 0.4089 0.3895 0.4152 0.3961 0.3498

Variable K-components K-cores Lambda sets Modularity groups N-clansa

Source out-degree 0.384*** (0.020) 0.381*** (0.019) 0.392*** (0.019) 0.349*** (0.023) 0.376*** (0.021)
Source in-degree 0.014 (0.033) 0.021 (0.033) 0.046 (0.036) 0.071 (0.043) 0.024 (0.036)
Target out-degree −0.000 (0.019) −0.000 (0.019) 0.015 (0.019) 0.009 (0.019) 0.026 (0.018)
Target in-degree 0.303*** (0.038) 0.305*** (0.039) 0.347*** (0.041) 0.390*** (0.044) 0.331*** (0.038)
Source clustering −0.145* (0.064) −0.129* (0.064) −0.127* (0.064) −0.101 (0.067) −0.143* (0.067)
Target clustering 0.059* (0.028) 0.058* (0.028) 0.044 (0.029) 0.107** (0.031) 0.058 (0.031)
Source betweenness −0.057 (0.044) −0.065 (0.046) −0.060 (0.048) −0.107* (0.053) −0.081 (0.051)
Target betweenness −0.052* (0.026) −0.052 (0.027) −0.045 (0.028) −0.137*** (0.033) −0.081** (0.027)
Source out-reach 0.073 (0.085) 0.061 (0.085) 0.069 (0.088) 0.173* (0.085) 0.115 (0.090)
Source  in-reach 0.084 (0.058) 0.119 (0.068) 0.064 (0.070) 0.160* (0.063) −0.012 (0.058)
Target out-reach 0.022 (0.041) 0.021 (0.042) −0.043 (0.047) 0.152*** (0.043) −0.060 (0.047)
Target in-reach −0.079* (0.035) −0.078* (0.036) −0.107** (0.037) −0.071 (0.040) −0.110** (0.037)
Group membership 0.306*** (0.026) 0.282*** (0.030) 0.373*** (0.038) 0.170*** (0.042) 0.228*** (0.040)
Group overlap 0.230*** (0.026)
Constant 1.493*** (0.047) 1.499*** (0.047) 1.475*** (0.048) 1.521*** (0.048) 1.511*** (0.048)
Observations 50931 50931 50931 50931 50931
Pseudo R2 0.3808 0.3757 0.3799 0.3543 0.3771

a For the N-clans, N = 2 for computational reasons.
* p<.05.

** p<.01.
*** p<.001.

legitimacy” in what are relatively unregulated internal knowledge
markets within organizations. In other words, as the availability
of knowledge, especially electronic knowledge, has increased in
organizational life, the incidence of strategic information behav-
iors (Zmud, 1990) has also increased, resulting in a greater need
for knowledge filters within organizations and groups (Hansen
and Haas, 2001; Simon, 1997). As attention is a scarce resource
in organizations, the need to allocate it wisely is of tantamount
importance for organizational efficiency and effectiveness. In this
respect, having a “group” of contacts which provides relatively reli-
able, useful information is an indispensable asset. We  can imagine,
for instance, the context of military groups in combat situations,
which are highly dependent on receiving accurate, timely infor-
mation to fulfill their missions. In such a situation, having access
to a legitimate, reliable set of interlocking command structures
and groupings which systematically filter extraneous information
and transmit the “right” information may  be a matter of life and
death.

Further, we believe that being able to identify information com-
munities using the variable clique overlap model would allow
researchers to identify regions of the social network where infor-
mation exchange is more likely, not only in terms of information
exchanged in the case of emails or telephone calls or other con-
tacts, but also in terms of attention given to the information by
knowledge receivers. As demonstrated by Hansen and Haas (2001),
in regions of the network where many documents are exchanged,

more selected and concentrated providers of electronic documents
received greater attention. Similarly, documents and information
which have a pre-existing “signal of quality” as determined by
the linkage to members of a group of overlapping cliques, may be
more likely to be processed by receivers. While it is true that these
documents would also probably be less likely to need processing
by receivers due to the legitimacy conferred by their linkage to
structurally important nodes, it is nevertheless important to con-
sider that such associations serve an important filtering function
in that they direct attention towards those documents which are
associated with the most important or prominent members of the
network.

Beyond the issue of information processing, organizational
groups that have multiple, independent, paths of communication
are more likely to share traits related to organizational culture and
are thus more likely to survive even if some edges are removed
(Borgatti et al., 1990). For instance, the persistence of certain orga-
nizational divisions and departments despite the fact that they
may  not necessarily be cost-effective for the organization may  be
explained by the phenomenon we highlight in this paper. These
departments’ links to the broader organization and the larger com-
munity may  indeed legitimize their existence and persistence and
make difficult their removal. Thus, organizational structure issues
can be linked to issues of culture and organizational politics to
explain outcomes which seem to deviate from rational economic
accounts.
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5.2. Limitations and implications for future research

As with other models which attempt to link structural aspects
of groups within social networks to organizational outcomes, the
variable clique overlap model faces the challenge of balancing the
conceptual quality of the model with its real-world impact (Carley,
2002). However, this limitation also opens up several potential
directions for extending this research further. First, we  character-
ized organizational environments in this paper by examining the
relative benefits of network closure over brokerage. This raises two
important issues. On the one hand, discussing reliable measures
and means to identify these relative benefits is very important
for the direct applicability of our findings. On the other hand, if
the communities we define are desirable structures within a given
organizational communication system, ensuring the presence of
the higher benefits from network closure within the organization
imposes a very important policy making question.

Second, we concentrated on the parsimony of our work. Fol-
lowing the logic of Burt (2005), we identified relevant network
structures based solely on the connection patterns. The generality
of our approach affects the applicability of our research in several
ways. A promising area of future research could examine the mod-
erating role of communication content to our results. For instance,
do implied relationships tend to be stronger when the connec-
tion patterns reflect not only the existence of communication, but
also communication about a particular, narrow, topic? Further, in
the organizational setting, if the model could capture demographic
information, aspects of organizational hierarchy and structure, etc.
it might provide better insight into not only the expected commu-
nication patterns within a given network, but also how the flow of
information may  be utilized at different nodes and within different
clusters of individuals. Future work might attempt to identify how
our methods can be refined by including such variables into the
analysis.

Third our work could be applied to better identify bottlenecks
within organizational communication systems. These bottlenecks
would not necessarily be identified by traditional brokerage argu-
ments: in our model brokerage does not exclusively correspond
to individuals but is broadened to include groups of individuals
that may  play a role in regulating information flows (structurally
this corresponds to the idea of overlapping cliques as we have
illustrated). Beyond this, and in general, our techniques could be
used to optimize the throughput of organizational communica-
tion networks. Combining ideas from the above two  paragraphs,
it would be natural to relate our work to knowledge flows in orga-
nizations (Cool et al., 1997; Hansen, 2002; Nahapiet and Ghoshal,
1998).

Another promising area of applications is marketing. As our
methods take a step toward better estimating social influence
among members of a communication network based only on the
connection patterns, they can serve three fast developing areas in
network marketing. First, the communities defined by our model
can be interpreted as a segmentation of a networked market. It
would be interesting to see future research discover how much
the so-defined social groups share consumption patterns, general
interests or specific knowledge. Second, our findings may  help
marketers identify opinion leaders in networks, facilitating viral
marketing practices. Third, as social influence can lead to extra rev-
enue flows to the firm through word of-mouth, our work should
provide ground for improving the existing customer relationship
management techniques.10

10 These techniques evaluate customer profitability by comparing discounted rev-
enue flows from the customer to the cost of acquisition and the cumulative cost of
retention. For more details, see Bolton (1998).

Furthermore, despite using longitudinal data in our empirical
studies, we constructed our networks by collapsing all communi-
cation records into one network layer. In a recent paper, Palla et al.
(2007) consider shorter periods of aggregation as they focus on how
communities evolve over time. This idea could be used for analyz-
ing changes in organizational communication systems, ultimately
improving their efficiency.

5.3. Conclusion

In summary, this study contributes to the important and grow-
ing literature on “structural patterning” (Kilduff and Brass, 2010)
in social networks, in particular studies of clique structure and its
relationship to outcomes of organizational interest. Although ear-
lier work has suggested that overlapping cliques might offer a way
to study different organizational outcomes, our study refined this
concept for the communication network context. Studying variable
clique overlap models allows us to get closer to fully describ-
ing communication networks with no indispensable central nodes,
which have built-in redundancy mechanisms that allow the organi-
zation to function despite the potential presence of internal fissures
and external disruptions. The examples noted in the preceding
paragraphs are but a few where our extension of network closure
theory can help the organizational researcher estimate relation-
ship intensity in the absence of data on information traffic, solely
based on connection patterns (which information is clearly easier
to obtain than more detailed records on communication). Subse-
quent studies can test the efficacy of this model when the content
of information is also taken into account.
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